通讯/第一作者论文(上标1为共同第一作者,上标*为通讯作者)
1.He, Y., Li, H., Chen, L., Zheng, L., Ye, C., Hou, J., Bao, X., Liu, W.,Shen, Y*.2021. Production of xylitol bySaccharomyces cerevisiaeusing waste xylose mother liquor and corncob residues. Microb Biotechnol. 5-year IF=6.559
2.Liang, Z., Wang, X., Bao, X., Wei, T., Hou, J., Liu, W.,Shen, Y*.2021. Newly identified genes contribute to vanillin tolerance inSaccharomyces cerevisiae. Microb Biotechnol, 14(2), 503-516. 5-year IF=6.559
3.Guo, W., Huang, Q., Feng, Y., Tan, T., Niu, S., Hou, S., Chen, Z., Du, Z.Q.*,Shen, Y.*,Fang, X*. 2020. Rewiring central carbon metabolism for tyrosol and salidroside production inSaccharomyces cerevisiae. Biotechnol Bioeng. 5-year IF= 4.630
4.Wu, M., Li, H., Wei, S., Wu, H., Wu, X., Bao, X., Hou, J., Liu, W.,Shen, Y*.2020. Simulating Extracellular Glucose Signals Enhances Xylose Metabolism in RecombinantSaccharomyces cerevisiae. Microorganisms, 8(1). IF= 4.128
5.Zheng, L., Wei, S., Wu, M., Zhu, X., Bao, X., Hou, J., Liu, W.,Shen, Y*. 2020. Improving Xylose Fermentation inSaccharomyces cerevisiaeby Expressing Nuclear-Localized Hexokinase 2. Microorganisms, 8(6). IF= 4.128
6.Wei, S., Bai, P., Liu, Y., Yang, M., Ma, J., Hou, J., Liu, W., Bao, X.,Shen, Y*.2019. A Thi2p Regulatory Network Controls the Post-glucose Effect of Xylose Utilization inSaccharomyces cerevisiae. Front Microbiol, 10, 1649. 5-year IF=6.320
7.Wei, S., Liu, Y., Wu, M., Ma, T., Bai, X., Hou, J.,Shen, Y.*,Bao, X. 2018. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization inSaccharomyces cerevisiae. Biotechnol Biofuels, 11, 112. 5-year IF= 6.485
8.Wang, X., Liang, Z., Hou, J.,Shen, Y.*,Bao, X*. 2017. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis inSaccharomyces cerevisiae. Front Microbiol, 8, 367. 5-year IF=6.320
9.Hou, J.1,Shen, Y.1, Jiao, C., Ge, R., Zhang, X., Bao, X. 2016. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome inSaccharomyces cerevisiae. J Biosci Bioeng, 121(2), 160-5. 5-year IF= 2.746
10.Li, H.1,Shen, Y.1, Wu, M., Hou, J., Jiao, C., Li, Z., Liu, X., Bao, X. 2016. Engineering a wild-type diploidSaccharomyces cerevisiaestrain for second-generation bioethanol production. Bioresour Bioprocess, 3(1), 51. IF= 4.578
11.Wang, X., Liang, Z., Hou, J., Bao, X.*,Shen, Y*. 2016. Identification and functional evaluation of the reductases and dehydrogenases fromSaccharomyces cerevisiaeinvolved in vanillin resistance. BMC Biotechnol, 16(1), 31. 5-year IF= 3.292
12.Li, H., Wu, M., Xu, L., Hou, J., Guo, T., Bao, X., &Shen, Y.*, 2015. Evaluation of industrialSaccharomyces cerevisiaestrains as the chassis cell for second-generation bioethanol production. Microb Biotechnol, 8(2), 266-274. doi: 10.1111/1751-7915.12245 (IF 3.991)
13.Wang, C., Bao, X., Li, Y., Jiao, C., Hou, J., Zhang, Q., . . .Shen, Y.*. (2015a). Cloning and characterization of heterologous transporters inSaccharomyces cerevisiaeand identification of important amino acids for xylose utilization. Metab Eng, 30, 79-88. doi: 10.1016/j.ymben.2015.04.007 (IF 8.201)
14.Wang, C., Bao, X., Li, Y., Jiao, C., Hou, J., Zhang, Q., . . .Shen, Y.*. (2015b). Data set for cloning and characterization of heterologous transporters inSaccharomyces cerevisiaeand identification of important amino acids for xylose utilization. Data Brief, 4, 119-126. doi: 10.1016/j.dib.2015.05.005
15.Shen, Y., Li, H., Wang, X., Zhang, X., Hou, J., Wang, L., . . . Bao, X*. (2014). High vanillin tolerance of an evolvedSaccharomyces cerevisiaestrain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol, 41(11), 1637-1645. doi: 10.1007/s10295-014-1515-3 (IF 2.81)
16.Xu, L.1,Shen, Y.1, Hou, J. , Tang, H., Wang, C., & Bao, X*. (2014). Promotion of extracellular activity of cellobiohydrolase I fromTrichoderma reesei by protein glycosylation engineering inSaccharomyces cerevisiae. Curr Synthetic Sys Biol 2(2), 1-6. doi: 10.4172/2332-0737.1000111
17.吴宏宇,吴显伟,赵建志,鲍晓明,侯进,王林风, . . .沈煜*. (2014).蛋白质质量控制系统在增强酿酒酵母耐热性中的作用及机制.生物过程, 4, 7.
18.Shen, Y., Hou, J., & Bao, X*. (2013). Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinantSaccharomyces cerevisiae. Bioengineered, 4(6), 435-437. doi: 10.4161/bioe.25542 (IF 1.87)
19.Wang, C.1,Shen, Y.1, Hou, J., Suo, F., & Bao, X*. (2013). An assay for functional xylose transporters inSaccharomyces cerevisiae. Anal Biochem, 442(2), 241-248. doi: 10.1016/j.ab.2013.07.041 (IF 2.243)
20.Peng, B.1,Shen, Y.1, Li, X., Chen, X., Hou, J., & Bao, X*. (2012). Improvement of xylose fermentation in respiratory-deficient xylose-fermentingSaccharomyces cerevisiae. Metab Eng, 14(1), 9-18. doi: 10.1016/j.ymben.2011.12.001 (IF 8.201)
21.Shen, Y.1, Chen, X.1, Peng, B., Chen, L., Hou, J., & Bao, X*. (2012). An efficient xylose-fermenting recombinantSaccharomyces cerevisiaestrain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol, 96(4), 1079-1091. doi: 10.1007/s00253-012-4418-0 (IF 3.42)
22.Ji, L.1,Shen, Y.1, Xu, L., Peng, B., Xiao, Y., & Bao, X*. (2011). Enhanced resistance ofSaccharomyces cerevisiaeto vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol, 102(17), 8105-8109. doi: 10.1016/j.biortech.2011.06.057 (IF 5.651)
23.彭炳银,陈晓,沈煜*, &鲍晓明. (2011).不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响.微生物学报, 51(7) :914-922.
24.Shen, Y., Zhang, Y., Ma, T., Bao, X.*, Du, F., Zhuang, G., & Qu, Y. (2008). Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinantSaccharomyces cerevisiaeexpressing beta-glucosidase. Bioresour Technol, 99(11), 5099-5103. doi: 10.1016/j.biortech.2007.09.046 (IF 5.651)
参编专著
1.曲音波,鲍晓明,陈冠军,方诩,高培基,刘巍峰,沈煜,汪天虹,王禄山,赵建,《木质纤维素降解酶与生物炼制》,化学工业出版社,ISBN 978-7-122-11311-5,2011年9月
2.姜岷 曲音波 等,《非粮生物质炼制技术——木质纤维素生物炼制原理与技术》,化学工业出版社,ISBN 978-7-122-28373-3, 2018年2月